C++ Trees Part 1: Understanding the core::tree<> Implementation

by Justin Gottschlich
1. Introduction

For all of C++’s brilliance of strongly type-safe generic programming design, its standard library
selection leaves much to be desired. Unlike Java, which has libraries for just about everything,
C++ only has a handful. These C++ standard libraries are for containers, algorithms, streams and
the like. Surprisingly, C++’s list of standard containers does not include a tree container
[Musser1].

While hopes exist that C++0x may come with tree container support, C++’s current lack of native
tree container support is enough to push programmers away from correctly designed systems
using trees, in favor of poorly designed systems that use currently available standard containers. |
created the core::tree<> container primarily to overcome this hurdle and add a missing piece to
C++’s already powerful and elegantly designed generic containers.

After presenting the arguments made within this article to senior software engineers at Quark,
Inc., they began adopting the core::tree<> family (tree, multitree, tree_pair, multitree_pair). Quark
has since licensed the core::tree family (royalty free) and has been using it since 2002. They are
currently using the core::tree family in their world class software, QuarkXPress 6.0 and expanding
its use greatly for QuarkXPress 7.0 [Quark1].

This article is only part one of a series of articles written on the core::tree<> family. Part one
primarily focuses on explaining the limitations of using C++’s map<> and multimap<> as tree
containers and show the advantages of using the core::tree<> in its stead.

Additionally, simplistic sample core::tree<> code is given to increase basic familiarity with the
core::tree<> design. Later installments of to the core::tree<> series will explain more complex
usage of the core::tree<> and its flexibility in design.

Lastly, the core::tree<> source code is included for anyone to use, royalty free. The only request
is that the licensing agreement found in the tree.h header is followed.

The layout of this article is as follows:

Introduction

std::map<> versus core::tree<>
Using the core::tree<>

Conclusion

References

core::tree<> source (tree.h header)

oukwnNE

2. std::map<> versus core::tree<>

Many experienced C++ programmers use C++’s standard template library’s (STL) map<> and
multimap<> to generate trees. Yet, these containers make poor substitutes for true tree designs
for a variety of reasons. This section will take a closer look at the pitfalls of using C++’s
std::map<> and std::multimap<> for tree containment.

2.1 Basic std::map<> tree implementation

Before beginning the implementation of a tree using std::map<>, a framework must be defined in
which the tree will work. For the purposes of this article the following nhamespace will be used to

control the number of leaves generated at the root level and maximum branch depth of the trees
constructed:

NNy
nanespace nTreeData

{

const int kMaxLeaves = 10;
const int kMaxDepth = 5;

Figure 2.1

Additionally, the following class defined (in figure 2.2) will be used as the leaf node, which will be
inserted at every branch of the tree.

THLELEEEEE bbb iirrrn
class Leaf

{
public:

Leaf () : value_(0) {}
explicit Leaf(const int &value) : value_(value) {}

const int &alue() const { return value_; }

bool operator==(const Leaf & hs) const { return this->value() == rhs.value(); }
bool operator<(const Leaf & hs) const { return this->value() < rhs.value(); }

private:
int value_;
H

Figure 2.2

Combining the definitions provided in figure 2.1 and figure 2.2, an example of an std::map<> tree
can be constructed:

#i ncl ude <map>
#i ncl ude <i ostreanr

typedef std::nap<Leaf, int> Leaf MapConcrete;
typedef std::nap<Leaf, int>* Leaf MapPoi nter;
typedef std::map<Leaf, Leaf MapPointer > Leaf Map;

voi d fun()

usi ng nanespace nTreeDat a;
Leaf Map | eaf Tree;

NN NN NN
Il create a sinple leaf tree
N NN NNy
for (int i =0; i < kMaxLeaves; ++i)
{

/'l insert a starter |eaf

Leaf MapPoi nter p = new Leaf MapConcr et e;

| eaf Tree. i nsert (Leaf Map: : val ue_type(Leaf (i), p));

Leaf Map: :iterator iter = leaf Tree.find(Leaf(i));

/1 continue inserting children inside of children
for (int depth = 0; depth < kMaxDepth; ++depth)

{
Leaf MapPoi nter inner = new Leaf MapConcr et e;
Leaf Map* outer = (Leaf Map*)(iter->second);
out er->i nsert (Leaf Map: : val ue_type(Leaf (depth), inner));
iter = outer->find(Leaf(depth));
}

THLELLEEEL bbb bbbl
/1 deallocate the leaf tree
THEELLELELE i rr bbb

for (Leaf Map::iterator destroy = | eaf Tree. begin(); destroy != |eaf Tree.end();
++dest roy)
{
Leaf Map: : const _iterator inner = destroy;
Leaf Map* iterMap = (Leaf Map*) (destroy->second);
Leaf Map* | ast Map;
for (inner = iterMap->begin(); inner != iterMap->end(); inner =
i ter Map- >begin())
{
lastMap = iterMp;
/'l move the iterMap forward
iterMap = (Leaf Map*)i nner->second;
del ete | ast Map;
}
}

Figure 2.3

Figure 2.3 demonstrates how to use a std::map<> to implement a tree in C++. The above
implementation is a common method for overcoming STL’s lack of native tree container support.
Unfortunately, it has many problems:

1. Dynamic memory allocation and deallocation must be implemented for the tree by the
programmer. Additional code must be added in figure 2.3 to do full depth and breadth
tree iteration to allocate and deallocate each branch. Currently, figure 2.3 only provides
simple deallocation (since we’re assuming knowledge of the tree layout). Correct and
complete memory deallocation requires more work. Additionally, it is very common for
programmers to make mistakes when implementing complex memory management,
which leads to memory leaks. One of the advantages of using STL containers is that they
perform memory management internally [Josuttis1]. However, when using STL maps to
construct trees in this manner, the memory management advantage of STL is lost.

2. Many C-style / reinterpret_cast<> type-casts are required. Type-casting is dangerous
(especially, C-style casting and reinterpret_cast<>). Accidental incorrect type-casting can
cause unexpected run time behavior. As Stroustrup reminds us, we should avoid explicit
casting [Stroustrupl].

3. The code is complex. Simply doing the construction and destruction of the tree is rather
hard to understand. If the code to generate and populate a simple tree is this difficult to
write, how difficult will it be to write more complex trees? What about the difficulty of
maintaining this tree code (especially by someone who didn’t originally write the code)?
Sutter and Alexandrescu point out in their “C++ Coding Standards”, simple should always
be preferred over complex [Sutterl]. Figure 2.3’s tree implementation clearly violates this
rule.

4. There is a great deal of wasted space. For each branch of the tree generated, an extra
integer is generated serving no purpose except as a filler. Unfortunately, there is no way
to remove this extra filler. This is another clue that the design is flawed - unnecessary
pieces are present in the implementation that do not aid the design.

Consider now the same tree being generated using the core::tree<> container:

#i ncl ude "tree. h"
#i ncl ude <i ostreanr

void fun()

usi ng namespace nTreeDat a;
usi ng nanmespace core;

core::tree<Leaf > | eaf Tree;
NN NNy

/] create a sinple leaf tree
N N NN NNy

for (int i =0; i < kMaxLeaves; ++i)
{
/1l insert a starter |eaf
tree<Leaf>::iterator iter = |leaf Tree.insert(Leaf(i));

/1 continue inserting children each tine
for (int depth = 0; depth < kMaxDepth; ++depth)

/1 insert and step into the newy created branch
iter = iter.insert(Leaf(depth));
}
}
}

Figure 2.4

The code within figure 2.4 implements the same tree as the std::map<> solution within figure 2.3.
However, the tree constructed using the core::tree<> container (figure 2.4) is less complex than
the tree constructed using std::map<>. Furthermore, the core::tree<> implementation requires
less code than the std::map<> implementation. Lastly, the core::tree<> implementation has none
of the pitfalls the std::map<> implementation has:

No dynamic memory allocation or deallocation is needed, it is all handled internally.
Not even a single type-cast is used.

The code is very straight forward.

There is no wasted space.

PONPE

Reviewing the above implementations of trees, it is clear the tree implementation using
std::map<> is error-prone, complex and run time unsafe. However, the tree implementation using
the core::tree<> is simple and elegant, and solves the tree design problem with no additional
programmatic overhead. The core::tree<> code is also easier to understand than the std::map<>
code which leads to easier code maintenance.

3. Using the core::tree<>

C++’s STL implementation is genius. The advantages and subtleties of its implementation are so
numerous, it is impossible to cover them in a single article, or even in a single book. It was with
STL in mind, that the core::tree<> was designed. The core::tree<> container follows as many of
the STL design practices as possible, while still ensuring its own tree behavior remains correct.

The core::tree<> implements both const_iterators and iterators for tree iteration. By default, it
uses operator<() and operator==() for inserts and finds/removes, but allows predicates to be used
to overload that functionality. The core::tree<> implements begin() and end() on its containers as
well as post-increment and pre-increment on its iterators. For moving in and out within the tree,
methods in() and out() can be called — this makes tree depth iteration very simple. Many other
powerful pieces of functionality are implemented as well, such as size(), level() and, of course, full
tree copying (just like all STL containers) by use of operator=().

Perhaps the biggest downfall of the std::map<> tree implementation is its lack of simple
“complete” tree copying. Calling operator=() on the std::map<> would result in pointer copying,
not object copying and implementing a full tree copy would require even more dynamical memory

allocation introducing more possibilities for erroneous programmer made memory management
mistakes (more memory leaks).

Again, the above problems dissolve when using the core::tree<>. Copying a tree into another tree
is as simple as:

core::tree<Leaf> treel;

/I ... do work on treel here

/I now copy the entire contents of treel into tree2
core::itree<Leaf> tree2 = treel,

Thus, the core::tree<> container’s learning curve is very low for anyone who is already familiar
with C++’s STL containers.

The below sample code demonstrates the ease of use of the core::tree<> container. The code in
figure 3.1 performs simple tree construction and tree output.

#i ncl ude <i ostreanr
#i nclude “tree.h”

void fun()

/1 the tree containers all sit inside the core namespace
usi ng nanespace core
usi ng nanespace nTreeData

tree<Leaf > | eaf Tree

FEEEETEEEETEr i i i bbb rrrr iy
/Il create a sinple leaf tree
NN NN NN
for (int i =0; i < kMaxLeaves; ++i)
{

/'l insert a starter |eaf

tree<Leaf>::iterator iter = leaf Tree.insert(Leaf(i));

/1 continue inserting children each tine
for (int depth = 0; depth < kMaxDepth; ++depth)

/1 insert and step into the newy created branch
iter = iter.insert(Leaf(depth));
}
}

N NN NNy

/'l output the leaf tree
NN NN NN

for (tree<Leaf>::const_iterator iter = |leafTree.begin(); iter !=leafTree.end();
++iter)

{

std::cout << iter.data().value() << std::endl

tree<Leaf>::const_iterator inner = iter

/] tree's iterators are containers thenselves - use the sane iterator to
/'l traverse inwards through the tree

for (inner = inner.in(); inner !'=inner.end(); inner = inner.in())

for (int tabs = 1; tabs < inner.level (); ++tabs) std::cout << "\t";

std::cout << (*inner).value() << std::endl

}
}
}

Figure 3.1

For clarity, a step-by-step analysis of the core::tree<> code in figure 3.1 is given below.

1. Construct the tree container:

tree<Leaf > | eaf Tree;

2. Populate the tree with data. The outer for loop inserts branches into the root tree. The inner
for loop inserts branches into each additional branch inserted. Thus, the outer for loop is a
breadth population and the inner for loop is a depth population. Notice that the inner for loop
assigns the inserted iterator to itself: iter = iter.insert(). This forces iter to continue stepping
inward, becoming the iterator of the branch inserted by the iter.insert() operation.

for (int i =0; i < kMaxLeaves; ++i)
{

/'l insert a starter |eaf
tree<Leaf>::iterator iter = leaf Tree.insert(Leaf(i));

/1 continue inserting children each tine
for (int depth = 0; depth < kMaxDepth; ++depth)

/1 insert and step into the newy created branch
iter = iter.insert(Leaf(depth));
}
}

3. lterate through the tree. The outer for loop iterates through the branches of the root tree. The
inner for loop iterates inward. Again, notice how inner = inner.in() is performed within the nested
for loop. This forces the inner iterator to continue to step into itself until there are no further
branches inward.

for (tree<Leaf>::const_iterator iter = |leafTree.begin(); iter !=leafTree.end();
++iter)
{

std::cout << iter.data().value() << std::endl;
tree<Leaf>::const_iterator inner = iter;
/] tree's iterators are containers thenselves - use the sane iterator to
/'l traverse inwards through the tree
for (inner = inner.in(); inner !'=inner.end(); inner = inner.in())
for (int tabs = 1; tabs < inner.level(); ++tabs) std::cout << "\t";
std::cout << (*inner).value() << std::endl;

}
}

4. The output of the leafTree that’s built above is as follows:

0 3
0 0
1 1
2 2
3 3
4 4
1 4
0 0
1 1
2 2
3 3
4 4
2 5
0 0
1 1
2 2
3 3
4 4

As you can see from the above output the root of the tree has ten branches. Each of those ten
branches contain five inner branches, all nested within each other. Analyzing the output in step 4
can aid in understanding the code in step 3.

Due to the core::tree<> design following some of the STL container paradigms, certain STL
algorithms can be followed. For example, the std::for_each algorithm can be used to iterate
across any breadth of tree (keep in mind, tree depth iteration requires a bit more work). Figure 3.2
demonstrates a simple core::tree<> implementation using std::for_each.

#i ncl ude <al gorithne
#i ncl ude <i ostreanr
#include “tree.h”

N NN NNy
voi d out put Leaf (const Leaf &)

std::cout << |.value() << std::endl

}

IR N NN NN
voi d fun()

core::tree<Leaf> | eaf Tree

for (int i =0; i < nTreeData:: kMaxLeaves; ++i) leafTree.insert(Leaf(i));
std::for_each(l eaf Tree. begin(), |eafTree.end(), outputLeaf)
}
Figure 3.2

To perform complete tree output iteration (both breadth and depth) in a single function, a minor
amount of recursion is generally suggested (although it can be performed iteratively). However,
the code is still very straightforward and easy to write:

#i ncl ude <i ostreanr
#include “tree.h”

NNy
voi d out putLeaf (core::tree<Leaf>::const_iterator &tree)

{
/] a tree iterator can check itself for its end
for (core::tree<Leaf>::const_iterator i = tree.begin();i !=tree.end(); ++i)
for (int tabs = 1; tabs < i.level(); ++tabs) std::cout << "\t";
std::cout << (*i).value() << std::endl
out put Leaf (i);
}
}

NN NNy
void fun()

/1 the tree containers all sit inside the core namespace

usi ng nanespace core;
usi ng nanespace nTreeDat a;

core::tree<Leaf> | eaf Tree;

[/for (int i =0; i < nTreeData::kMaxLeaves; ++i) |eafTree.insert(Leaf(i
NN NN
/Il create a sinple leaf tree

IR NN NN NN
for (int i =0; i < kMaxLeaves; ++i)

{

))s
/1

/'l insert a starter |eaf
tree<Leaf>::iterator iter = |leaf Tree.insert(Leaf(i));

/1 continue inserting children each tinme
for (int depth = 0; depth < kMaxDepth; ++depth)

/1 insert a 100 pl acehol der leaf, then insert a |leaf and step into it
iter.insert(Leaf(100));
iter = iter.insert(Leaf(depth));
}
}

out put Leaf (static_cast<core::tree<Leaf>::const_iterator >(leafTree));

}
Figure 3.3

Figure 3.3 will properly output a tree with any number of branches within any given branch.
Additionally, figure 3.3 demonstrates a fundamental difference between core::tree<> containers
and STL containers:

core::itrees<> are core::tree<>::iterators.

The last line of code in figure 3.3 shows the static_cast<> operation converting a core::tree<> into
a core::tree<>const_iterator. This is a fundamental deviation and necessity for the core::tree<>
implementation. This concept alone, is what makes the core::tree<> container possible. More
detailed explanation is given about this concept in the next portion of the core::tree<> series.

4. Conclusion

C++’s STL containers are superior when implementing the role they were designed to perform.
However, using STL containers to perform actions they weren’t designed to perform (as with
anything else) will not only result in a poorly designed systems, it will likely cause many
implementation flaws to arise (as seen in section 2.1).

C++’s std::map<> was built for key/value tables, not for N-depth tree implementations. While
programmers, especially C++ programmers, are notorious for inventive solutions, generic
frameworks should be used in the manner they were meant to be used. Using these frameworks
for purposes other than their intended roles may (and often will) result in trouble.

The core::tree<> container is far from perfect. It certainly has limitations and flaws in its
implementation; it will not work with all STL algorithms and it may even have trouble compiling on
some systems. Yet, when considering what is available in C++ today and the advantages the
core::tree<> brings with it, it is a great replacement for std::map<> tree implementations.
Additionally, any problems encountered can be fixed directly by those using it as the entire source
is at your disposal.

While the core::tree<> implementation of trees can surely be improved (as with most anything)
the core::tree<> is 1) easy for most C++ programmers familiar with STL to use and 2) is already
being used in two commercial pieces of software: Quark XPress 6.0 and Nodeka. This shows, at

the very least, its stability of operation. If you have the need for generic tree containers in your
C++ software, you should consider using the core::tree<>.

5. References

[Josuttis1]

[Musserl]

[Quark1]

[Stroustrupl]

[Sutterl]

Josuttis, Nicolai M. The C++ Standard Library. Addison-Wesley, Upper Saddle
River, NJ 1999 . pp 31-32.

Musser, David and Atul Saini. STL Tutorial and Reference Guide. Addison-
Wesley, Upper Saddle River, NJ 1996. pp 69.

Quark, Inc. currently uses the core::tree_pair and core::multitree_pair in their
commercial software for tree implementations (mostly XML trees) as the
core::tree and core::multitree weren’t available at the time they licensed the
software. Quark has recently (April 2004) requested increased licensing
permission due to their expanding need of the core::tree family for its use
anywhere within their commercial software.

Stroustrup, Bjarne. The C++ Programming Language, Special Edition. Addison-
Wesley, Upper Saddle River, NJ 1997. pp 417-425.

Sutter, Herb and Andrei Alexandrescu. C++ Coding Standards. Addison-Wesley,
Upper Saddle River, NJ 2005.

6. core::tree<> source

N N NN RNy

/1 This generic tree container is the property of Justin Gottschlich. It may
/1 be used freely in comercial software or non-comercial software w thout
/1 explicit permission fromM. Cottschlich. However this header file comrent
/'l must always appear in this header file in its entirety.

/1 You may use this source code free of charge in any environnment, pending
/1 you e-nmil Justin (justin@odeka.com) so he is aware of how the tree
/1 container is being used and send updates as they are nade

/1 (c) 1999-2004 Justin CGottschlich
NN NNy

#i fndef tree_header _file
#define tree_header _file

#i f ndef NULL
#define NULL O
#endi f

#if WN32

#pragma war ni ng(push)

/1 Disable warning for multiple operator= defines
#pragma war ni ng(disable : 4522)

#pragma war ni ng(disable : 4786)

#endi f // WN32

nanespace core {

I NN
/Il tree_iterator forward declaration

IR N NN NN
tenpl ate <typename T> class tree_iterator

I N NN NNy
/] tree pair object definition
NN
tenpl ate <typename T> class tree

{
public

typedef tree_iterator<T> iterator;
typedef const tree_iterator<T> const_iterator

private:

/1 dass data
mutable T data_;

/1 What |evel are we on?
mut abl e size_t |evel _;
nut abl e size_t size_;

/1 Nobody gets any access to this
mut abl e tree *next_;

nmutabl e tree *prev_;

nmut abl e tree *out_;

mutable tree *in_;

N NN NN NN
/1 Renoves a link to a node ... doesn't destroy the Clree, just rips it

/1 out of it's current location. This is used so it can be placed el sewhere
/1 without trouble

RN NN NN
voi d di sconnect _()

{

/1 unlink this fromthe nmaster node

if (this->out_ != NULL) {
/1 this->out_ is going to be called alot in succession "register"
it
regi ster tree *out = this->out_;
/1 Decrenent the size of the outter |eve
--(out->size)
if (out->in_ ==this) {
if (NULL == this->next_) {
/1 If this is the last node of this level, zap the
hi dden node
del ete this->prev_;
out->in_ = NULL
el se {
/1 Otherwise, just reattatch the head node to the
next node
this->prev_->next _ = this->next_;
this->next_->prev_ = this->prev_;
out->in_ = this->next_;
}
el se {
/1 We should be able to do this absolutely.
this->prev_->next_ = this->next_;
if (NULL !'= this->next_) this->next_->prev_ = this->prev_;
}
/1 Point to nothing
this->next_ = this->prev_ = NULL
}
NN
/1 End of the tree list, private only
RN NN NN NN
const tree* end_() const { return (NULL); }
NN NN
/1 Does the actual insert into the tree
NN NN NN
tree& i _insert(tree *inTree, tree *level, bool (*pObj)(tree*, tree*))
{
/1 Do NOT nove this |line beyond this point. The reason is because we nust
/1 check to see if the node exists here because we may be renoving the
ONLY

/1 node in the tree. If it is then NULL == level ->n_. DO NOT REMOVE TH S
/1if (false == level ->nDuplicates)

/1 never allow duplicate keys
| evel ->remove(inTree->data());

/1 if there's no inner tree, make it
if (NULL == level->in_) {
/1 Dumy node, create it -- if good nmenmory do stuff, if NULL throw
if (tree *tenp = new tree) {
tenp->next _ = inTree
inTree->prev_ = tenp;
level ->in_ = inTree

el se throw "al location failed";
el se {

tree *tenp = level ->in_->prev_;

while (true) {

if (NULL == tenmp->next_) {
tenp->next _ = inTree

inTree->prev_ = tenp;
br eak;

else if (pObj(inTree, temp->next_)) {
tree *hold = tenp->next_;
/1l temp -> inTree -> hold
tenp->next _ = inTree;

i nTree->next _ = hol d;

/'l temp <- inTree <- hold

hol d->prev_ = inTree;
inTree->prev_ = tenp;
/1 1f we just inserted on the first node, we need to
nmake sure
/1 the in pointer goes to inTree
if (hold == level->in_) level->in_ = inTree;
br eak;
}
temp = tenp->next_;
}
}
inTree->out _ = |l evel;
++(1 evel - >si ze_);
inTree->level _ = level ->level () + 1;
return (*inTree);
}

NN NN
/1 No function object
N NN NNy
tree& i _insert(tree *inTree, tree *level)
{
/1 Do NOT nove this |line beyond this point. The reason is because we nust
/1 check to see if the node exists here because we may be renoving the
ONLY
/1 node in the tree. If it is then NULL == level -> n_. DO NOT REMOVE TH S
/1if (false == |evel ->nDuplicates)
| evel - >renove(inTree->data());

/1 if there's no inner tree, make it
if (NULL == level->in_) {
/1 Dummy node, create it -- if good nenory do stuff, if NULL throw
if (tree *tenp = new tree) {
tenmp->next _ = inTree;
inTree->prev_ = tenp;
level ->in_ = inTree;

el se throw "all ocation failed";
el se {
tree *tenp = level ->in_->prev_;

while (true) {
if (NULL == tenp->next_) {

tenmp->next _ = inTree;
inTree->prev_ = tenp;
br eak;

else if (inTree->data() < tenp->next_->data()) {
tree *hold = tenp->next_;
/!l temp -> inTree -> hold

tenmp->next _ = inTree;
i nTree->next _ = hol d;

/1 tenp <- inTree <- hold
hol d->prev_ = inTree
inTree->prev_ = tenp;

/1 If we just inserted on the first node, we need to

make sure
/1 the in pointer goes to inTree
if (hold == level->in_) level->n_ = inTree
br eak;
}
tenp = tenp->next_;
}
}
inTree->out _ = | evel
++(1 evel - >si ze_);
inTree->level _ = level->level () + 1
return (*inTree);
}
protected:

I NN NN
RN NN NN
const size_t size(const tree& in) const { return in.size(); }

const size_t level (const tree& in) const { return in.level(); }

N NN NN
/1 Points to the beginning of the list and sets the current
NN NN
const _iterator begin(const tree& in) const { return iterator(*(in.in_)); }

N NN NNy
/1 Notice that we're returning a const tree* here and not an iterator.

/1 This is because the iterator itself has a nmenber to a pointer. Doing

/1 an iterator constructor here would be |less efficient than just

/1 returning a tree* which can be assigned internally inside the iterator
/] operator--(). Al so because no one can call prev froma tree itself

/Il (this is protected), we don't have to worry about safety issues except
/1 for iterator safety
NN NN NN
const tree* prev(const tree& in) const { return (in.prev_); }

N NN NN NN
/1 Notice that we're returning a const tree* here and not an iterator.

/1 This is because the iterator itself has a menber to a pointer. Doing

/1 an iterator constructor here would be less efficient than just

/1 returning a tree* which can be assigned internally inside the iterator
/1 operator++(). Al so because no one can call prev froma tree itself

/1 (this is protected), we don't have to worry about safety issues except
/1 for iterator safety
NN NN
const tree* next(const tree& in) const { return (in.next_); }

NN NN
const _iterator in(const tree& in) const { return iterator(*(in.in_)); }

IR NN NN NN
const _iterator out(const tree& in) const { return iterator(*(in.out_)); }

public

THEELEEEE bbb rrrrrirlrg
/1 Default constructor

THEELLEEEE bbb rrrinnrl
tree() : next_(0), prev_(0), in_(0), out_(0), level _(0), size (0) {}

NNy
/1 Paired <T> constructor

RN NN NN NN
tree(const T & nT) : data_(inT), next_(0), prev_(0), in_(0), out_(0), level_(0),
size_(0) {}

FEEEETEEEETEr i i i rrrd
/| operator==, expects operator== has been witten for both t and u
RN NN NN
const bool operator==(const tree & nTree) const

if (this->data_ == inTree.data_) return true
return fal se

}

N NN NN
/'l The operator= which is a real copy, hidden and undefined
NN NN
const tree& operator=(const tree& in)

{
this->clear();
this->data_ = in.data_;
t hi s->copy_tree(in);
return *this;

}

RN NN NN NN

/1 copy constructor - now visible

NN NN

tree(const tree & n) : data_(in.data_), next_(0), prev_(0), in_(0), out_(0),
level _(0), size_(0) { *this =in; }

NN NN
// destructor -- cleans out all branches, destroyed entire tree
N NN NNy
virtual ~tree()

{
/1 Disconnect ourselves -- very inportant for decrenenting the
/1 size of our parent
t hi s->di sconnect _();
/1 Now get rid of our children -- but be snart about it,
/1 right before we destroy it set it's out_ to NULL
/1 that way Disconnect fails inmrediately -- nuch faster
if (this->size() > 0) {
register tree *cur = this->n_, *prev = this->n_->prev_;
/1 Delete the head node
prev->out _ = NULL
del ete prev;
for (; this->size_ > 0; --this->size_) {
prev = cur;
cur = cur->next_;
prev->out _ = NULL
del ete prev;
}
}
}

I NN NNy
RN NN NN
voi d copy_tree(const tree& in)

/1 for each branch iterate through all nodes and copy them
for (iterator i =in.begin(); in.end() !'=1i; ++i) {
iterator inserted = this->insert(i.data());

/1 for each node, see if there are inners - if so, copy those too
if (i.size() '=0) inserted.tree_ptr()->copy_tree(*i.tree_ptr());

}

IR NN NN
/!l Returns the first element of our tree
NN NN
const_iterator begin() const { return iterator(*(this->in_)); }
iterator begin() { return iterator(*(this->n_));

NN NN
/! Returns end_of _iterator

N NN NN
const _iterator& end() const { return tree::iterator::end_iterator(); }

RN NN NN NN
/1 Returns the first elenent of our tree
NN NN
const _iterator in() const { return iterator(*(this->in_)); }

iterator in() { returniterator(*(this->n_));

RN NN NN
/!l Returns an iterator which steps out one |evel
NN NN NN
const_iterator out() const { return iterator(*(this->out_)); }

iterator out() { return iterator(*(this->out_));

NN NN
/1 much like destructor with the exception that enpty can be called from
/1 an iterator, calling delete on an iterator will only delete the iterator
/1 calling enpty froman iterator will delete the tree it's iterating.
NN
void clear()

/1 Now get rid of our children -- but be smart about it,
/Il right before we destroy it set it's out_ to NULL
/1 that way disconnect_ fails inmrediately, nmuch faster
if (this->size() > 0) {
register tree *cur = this->in_, *prev = this->in_->prev_;

/1 Delete the head node
prev->out _ = NULL;
del ete prev;

for (; this->size_ > 0; --this->size) {

prev = cur;
cur = cur->next_;

prev->out _ = NULL;
del ete prev;

}

/1 Set our inner pointer and our size to O
this->in_ = NULL;
this->size_ = 0;

}

NN NN
Il retrieves a const ref for the t menber of the pair

FEEEETEEEETEr i i bbb i i
T& data() { return this->data_; }

RN NN NN
/1 sets and retrieves the t menber of the pair
NN NN NN NN
const T& data(const T &data_) const { return (this->data_ = data_); }

N N NN NN NNy

/1
N NN NN NN
const size_t level () const { return (this->level_); }

N NN NN NN
/1

RN NN NN
const size_t size() const { return this->size_; }

IR NN RN
/1 This creates a new tree node fromparaneters and then inserts it
/1l Also takes a function object which can be used for sorting on inserts
FEEEETEEEETEr i i i i b
const iterator insert(const T & nT, bool (*pObj)(tree*, tree*))
{

tree *nyPair = new tree(inT);

if (NULL == nyPair) throw "allocation failed";

return iterator(i_insert(nyPair, this, pOj));
}

RN NN NN NN
RN NN NN NN
const iterator insert(const iterator &)

{
tree *nyPair = new tree(i.data());
if (NULL == nyPair) throw "allocation failed";
return iterator(i_insert(nyPair, this));

}

N NN NN NN
/1 Insert with no function object
NN NN
const iterator insert(const T & nT)

{
tree *nyPair = new tree(inT);
if (NULL == nyPair) throw "allocation failed";
return iterator(i_insert(nyPair, this));

}

NN NN
/1 This takes an existing node, disconnects it fromwherever it is, and then
/1l inserts it into a different tree. This does not create a new node fromthe
/] passed in data.
N NN NN
const iterator reinsert(tree *in, bool (*pObj)(tree*, tree*))
{

i n->di sconnect _();

return iterator(i_insert(in, this, poj));

}

N NN NN NN
/1l Reinsert with no function object
NN
const iterator reinsert(tree *in)
{

i n->di sconnect _();

return iterator(i_insert(in, this));

}

NN NN
/Il removes first matching t, returns true if found, otherw se false
NN NN NN NN
const bool renove(const T & nData)

if (tree *tenp = this->in_) {
do {
if (inData == tenp->data_) ({
del ete tenp;
return true;

} while (NULL != (tenp = tenp->next_));

return fal se

}

N NN NN
RN NN NN
const bool erase(const iterator& i)

if (tree *tenp = this->in_) {
do {
if (temp == i.tree_ptr()) {
delete tenp
return true

}
} while (NULL !'= (tenp = tenp->next_));

return fal se

}

N NN NN NNy
const iterator operator[](size_t loc) const

tree *tenp;
for (tenp = this->n_; loc > 0; --loc) tenp = tenp->next_;
return iterator(*tenp);

}

N NNy
iterator operator[](size_t |oc)

tree *tenp;
for (tenp = this->n_; loc > 0; --loc) tenp = tenp->next_;
return iterator(*tenp);

}

I NN NN
/1 internal _only interface, can't be called even with deri ved objects due
/l toits direct reference to tree's private nmenbers
NN NN
const iterator find(const T & nT) const

if (tree *tenp = this->in_) {
do {
if (inT == tenmp->data_) return (iterator(*tenp));
} while (NULL != (tenp = tenp->next_));

return tree::iterator::end_iterator();

}

N NN NN
/1
NN
const iterator find(const T & nT, bool (*obj)(const T& const T&) const

if (tree *tenp = this->in_) {
do {
if (obj(inT, tenp->data_)) return (iterator(*tenp))
} while (NULL != (tenp = tenp->next_));
}

return tree::iterator::end_iterator();

}

NN NN NN
/1 internal _only interface, can't be called even with derived objects due
/1l toits direct reference to tree's private menbers
NN NNy
const iterator find(const T & nT, const iterator & ter) const
{

if (tree *tenp = iter.tree_ptr()->next_) ({

do {

if (inT == tenp->data_) return (iterator(*tenp));
} while (NULL != (tenmp = tenp->next_));

}

return tree::iterator::end_iterator();
}
RN NN NN
/1

RN NN NN
const iterator find(const T & nT, const iterator & ter, bool (*obj)(const T&
const T&)) const

if (tree *tenp = iter.tree_ptr()->next_) {
do {
if (obj(inT, tenp->data_)) return (iterator(*tenp))
} while (NULL !'= (tenp = tenp->next_));
}

return tree::iterator::end_iterator();
H

THLELEEEEE bbb rrrririrrd
/1l lterator for the tree

/1 Derived fromtree<> only so iterator can access tree's protected
/1 nmethods directly and inplenment themin the way they neke sense for the
/1 iterator

/1 The actual tree base nmenbers are never used (nor could they be since they
/] are private to even iterator). Wen a tree object is created an "iterator"
/1 object is automatically created of the specific type. Thus formng the
/'l perfect relationship between the tree and the iterator, also keeping the
/'l tenplate types defined on the fly for the iterator based specifically on
/1 the tree types which are being created
FEEEEEEEEETEE i b i i i r i rrrg
tenpl ate <typename T>
class tree_iterator : private tree<T>
{
private:

typedef tree<T> TreeType

nmut abl e TreeType *current_;
static tree_iterator end_of _iterator

FEEEETEEEETEE i i i bbb i
/1 unaccessible fromthe outside world

I NN NN
TreeType* operator&();

const TreeType* operatoré&() const;

public
TreeType* tree_ptr() const { return current_; }

NN NN NN
/'l Returns the end_of _iterator for this <T,U, V> layout, this really speeds
/Il up things like if (iter !=tree.end()), for (;iter !=tree.end();)
NN NN NN
static const iterator& end_iterator() { return end_of _iterator; }

NN NN
/1 Default constructor
RN NN NN NN
tree_iterator() : current_(NULL) {}

NN NN NN
/1 Copy constructors for iterators
NN NN
tree_iterator(const tree_iterator& i) : current_(i.current_) {}

RN NN NN NN
/1 Copy constructor for trees

N NN NN
tree_iterator(TreeType & ree_ref) : current_(&ree_ref) {}

N NN NN
/] Operator= for iterators
NN NN
const iterator& operator=(const tree_iterator& iter)

this->current_ = iter.current_;
return (*this);

}

NN NN
/] Operator= for iterators

FEEEETEEEETEr i i i i bbb
const iterator& operator=(const tree_iterator& iter) const

this->current_ = iter.current_;
return (*this);

}

NNy
N N NN NN
const iterator operator[](size_t loc) const

{ return *(this->current_)[loc]; }

NN NN
NN NN NN
iterator operator[](size_t |oc)

{ return *(this->current_)[loc]; }

N NN NN NN
/1 Operator= for trees
NN NN
const tree_iterator& operator=(const TreeType& rhs)

this->current_ = &(const_cast< TreeType& >(rhs))
return (*this);

}

THEELLEEEE bbb rrrinnrl
/1 Destructor

THELLEEEE bbbl
~tree_iterator() {};

I NN NN
/1 Operator equals
NN NN
const bool operator==(const tree_iterator& rhs) const

if (this->current_ == rhs.current_) return true
return fal se

}

NN NN
/'l Operator not equals
RN NN NN NN
const bool operator!=(const tree_iterator& rhs) const

{ return ! (*this == rhs); }

NN NN NN NN
/] operator++, prefix

I NN
const iterator& operator++() const

this->current_ = (const_cast< TreeType* >
(this->TreeType::next(*current_)));
return (*this);

const

N NN NN NNy
/] operator++, postfix
NN NN
const iterator operator++(int) const

{
iterator i Tenp = *this;
++(*this);
return (i Temp);

}

NN NN
/'l operator--

N NN NN
iterator& operator--()

this->current_ = (const_cast< TreeType* >
(this->TreeType::prev(*current_)));
return (*this);

}

IR NN NN
/1 Begin iteration through the tree
NN NN
const iterator begin() const { return this->TreeType::begin(*current_); }
iterator begin() { return this->TreeType::begin(*current_); }

NN NN
/1 Return the in iterator of this tree
NN NN NN NN
const iterator in() const { return this->TreeType::in(*current_); }
iterator in() { return this->TreeType::in(*current_); }

N NN NN NN
/1 Return the out iterator of this tree
NN NN
const iterator out() const { return this->TreeType::out(*current_); }
iterator out() { return this->TreeType::out(*current_); }

NN NN
/'l Are we at the end?
NN NN NN NN
const iterator& end() const { return this->TreeType::end(); }

NN NN

/1 Return the next guy

RN NN NN
const iterator next() const

{ return iterator (* const_cast< TreeType* >(this->TreeType::next(*current_)

IR NN
/1 Insert into the iterator's nilree
NN NN
const iterator insert(const T& t) const

{ return this->current_->TreeType::insert(t); }

RN NN NN
/1 Insert into the iterator's nfree (with a function object)
IR NN NN NN
const iterator insert(const T& t, bool (*obj)(TreeType*, TreeType*)) const
{ return this->current_->TreeType::insert(t, obj); }

NN NN NN

/1 This takes an existing node, disconnects it fromwherever it is, and then
/] inserts it into a different tree. This does not create a new node fromthe
/'l passed in data
NN NN NN NN
const iterator reinsert(const iterator & n, bool (*obj)(TreeType*, TreeType*))

{ return this->current_->TreeType::reinsert(in.current_, obj); }

)

}s

N NN NN NN
/1l Reinsert with no function object
NN NN
const iterator reinsert(const iterator & n) const

{ return this->current_->TreeType::reinsert(in.current_); }

NN NN
/1 get the data of the iter

N NN NN NN
T& operator*() { return this->current_->data(); }

const T& operator*() const { return this->current_->data(); }

N NN NN
/1 gets the t and u nenbers of the current tree

I NN NN
T& data() { return this->current_->data(); }

const T& data() const { return this->current_->data(); }

N N N NN NN NN
/] sets and retrieves the t and u nenbers of the pair
N NN NN NNy

const T& data(const T & nData) const { return this->current_->data(inData);

NN NNy
/1l Get the size of the current tree_iter

RN NN NN NN
const size_t size() const { return this->TreeType::size(*current_); }

FEEEETEPEETEE i r i i i b nrrd
/1

RN NN NN
const size_t level () const { return this->TreeType::level (*current_); }

N NN NN
/!l Rermoves the first instance of T in the tree

I NN NN
const bool renove(const T & nT) const { return current_->renove(inT); }

NN NN
/1 Finds the first instance of T in the tree
NN NN NN NN
const iterator find(const T & nT) const { return current_->find(inT); }

const iterator find(const T & nT, bool (*obj)(const T& const T&) const
{ return current_->find(inT, obj); }

I NN NN
/1 Finds the next instance of T based on the iterator passed in
NN NN
const iterator find(const T & nT, const iterator & ter) const

{ return current_->find(inT, iter); }

const iterator find(const T & nT, const iterator &ter
bool (*obj)(const T& const T&)) const
{ return current_->find(inT, iter, obj); }

RN NN NN
/1 Enpty this entire tree

IR NN NN NN
void clear_tree() const { delete this->current_; this->current_ = NULL; }

NN NN NN NN
/] Enpty this tree's children

RN NN NN
voi d clear_children() const { this->current_->clear(); }

THELLLEEEE i rr bbb rrrrlrl
/1 Static iterator initialization
THEETEEEEE bbb bbb rrrrnnl

}

tenpl ate <typename T>
tree_iterator<T> tree_iterator<T>::end_of _iterator

H

#if WN32

#pragma war ni ng(pop)
#endi f // WN32

#endif // tree_header file

